(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 214401 Roll No.

MCA.

(SEM. IV) THEORY EXAMINATION 2013-14

DESIGN AND ANALYSIS OF ALGORITHMS

Time: 3 Hours Total Marks: 100

Note: - Attempt questions from each Section as indicated.

SECTION-A

1. Attempt all parts of the section.

 $(2 \times 10 = 20)$

- (a) Define asymptotic notation $0.\Omega$ and θ .
- (b) Show that for any constant a and b. where b > 0, $(n + a)^b = \theta(n^b)$.
- (c) Use the master method to give tight asymptotic bounds for the recurrence

$$T(n) = 3T\left(\frac{n}{4}\right) + n \log_2^n.$$

- (d) Show that if $n \ge 1$, then for any n-key B-tree 'T' of height h and minium degree $t \ge 2$, $h \le \log_t \frac{n+1}{2}$.
- (e) What do you mean by randomized algorithm? Give an example.
- (f) What is minimum-weight spanning tree?

- (g) What do you mean by dynamic programming? How is it different from divide and conquer method.
- (h) Find all solutions to the following equation for x, $35x \equiv 10 \pmod{50}$.
- (i) Define NP and NP-complete class of problem.
- (j) Show that Bitonic-sorter[n], where n is an exact power of 2, contains θ (n \log_2^n) comparators.

SECTION-B

- Note: Attempt any three questions out of five questions from the following. $(3\times10=30)$
- 2. (a) Illustrate the operation of merge-sort on the array A = <5, 2, 4, 7, 1, 3, 2, 6>. Prove that running of merge sort is $\theta \left(n \log_2^n \right)$.
 - (b) Write the Algorithm for counting sort.
- 3. (a) Explain the properties of binomial tree.
 - (b) Why don't we allow a minimum degree of t = 1 for B-tree.
- 4. (a) Write a procedure to Huffman code.
 - (b) Determine the LCS of <1, 0, 0, 1, 0, 1, 0, 1> and <0, 1, 0, 1, 1, 0, 1, 1, 0>.
- 5. (a) What is the running time of BFS if its input graph is represented by an adjacency matrix and the algorithm is modified to handle this form of input?
 - (b) Discuss the procedure of Bellman-Ford Algorithm.
- 6. (a) Working modulo q = 11, how many spurious hits does the rabin-karp matcher encounter in the text T=3141592653589793 when looking for the pattern P=26?

(b) Show that Hamiltonian-path problem is NP-Complete.

SECTION-C

- Note: Attempt any one part from each question. All questions are compulsory. (5×10=50)
- 7. (a) Write an algorithm to sort the given array of elements using quick sort, illustrate the operation of quick sort on the array A = <5, 13, 2, 25, 7, 17, 20, 8> analyze its running time in best case also.
 - (b) With the help of recursion tree, provide tight asymptotic bound on the solution of:
 T(n) = T(n/2) + T(n/4) + T(n/8) + n.
- 8. (a) Explain Prim's algorithm using suitable example.
 - (b) Explain Dijkstra's algorithm. Illustrate the operation of Dijkstra algorithm on the following graph ('s' is the source vertex).

- (a) Show the results of inserting the key
 F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B, X, Y, D, Z, E in order into an empty B tree with degree 4. Only draw the configurations of the tree just before nodes must split, and also draw the final configuration.
 - (b) Write Pseudocode for Binomial Heap Union (H₁, H₂).

- (a) Discuss dynamic programming. Write the procedure for matrix chain multiplication.
 - (b) Define a knapsack problem and describe its formation. Find the optimal solution to the knapsack instance n = 5, W = [20, 30, 40, 10, 7], P = [7, 8, 9, 1, 6] and C = 80 using Greedy method.
- 11. (a) Use Strassen's algorithm to compute the product of two given square matrices:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \text{ and } \begin{bmatrix} 10 & 11 \\ 12 & 13 \end{bmatrix}$$

Also compute the number of multiplication and addition/subtraction operations in the process.

(b) Discuss RSA public-key-cryptography algorithm.